Dash logoUC Irvine logo

DATA set for PLOS One Hsieh et al. 2016


Meng, Jhao-An; Saberi, Kourosh (2016), DATA set for PLOS One Hsieh et al. 2016, Dataset, https://doi.org/10.7280/D1PK58


The auditory system encounters motion cues through an acoustic object’s movement or rotation of the listener’s head in a stationary sound field, generating a wide range of naturally occurring velocities from a few to several hundred degrees per second. The angular velocity of moving acoustic objects relative to a listener is typically slow and does not exceed tens of degrees per second, whereas head rotations in a stationary acoustic field may generate fast-changing spatial cues in the order of several hundred degrees per second. We hypothesized that these two types of systems (i.e., encoding slow movements of an object or fast head rotations) may engage functionally distinct substrates in processing spatially dynamic auditory cues, with the latter potentially involved in maintaining perceptual constancy in a stationary field during head rotations and therefore possibly involving corollary-discharge mechanisms in premotor cortex. Using fMRI, we examined cortical response patterns to sound sources moving at a wide range of velocities in 3D virtual auditory space. We found a significant categorical difference between fast and slow moving sounds, with stronger activations in response to higher velocities in the posterior superior temporal regions, the planum temporale, and notably the premotor ventral-rostral (PMVr) area implicated in planning neck and head motor functions


fMRI scanning of human cortex while listening to motion of an auditory source in 3D virtual space.


National Institutes of Health, National Institute on Deafness and Other Communication Disorders, Award: R01DC009659